Abstract
An experimental observation has been made by using aluminum-coated Mylar foils, which strongly supports that in the case of plastic target, the energetic part of the proton beam originates from the front-side of the target. When a 30 fs laser pulse with an intensity of 1.6×1019 W/cm2 was irradiated on the 12.5-μm-thick Mylar side of the aluminum-coated Mylar foil, the maximum proton energy was reduced by a factor 5.5 as compared to that of 3.3 MeV observed from the single layer of the Mylar foil. With the help of a two-dimensional particle-in-cell simulation, these observations can be interpreted that in the case of plastic target, the energetic proton beam originates from the front-side of the target. In the case of an aluminum-coated 6-μm-thick Mylar foil, more energetic proton beams of 4.7 MeV were also observed when the laser pulse was irradiated on the aluminum side as compared to those of 3.4 MeV from the single Mylar foil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.