Abstract

Time series analysis techniques in time domain and average cycle frequency were applied to characterize bubbling fluidization. The experiments were carried out in a laboratory scale fluidized bed, operated under ambient conditions and various sizes of particles, measurement heights, and different superficial gas velocities. It was found that a minimum in average cycle frequency and flatness and a shift of skewness from negative to positive against velocity correspond to shift from macrostructures and finer structures of the flow rather than transition velocity from the bubbling to turbulent regime. The power spectrum estimation of the measured pressure fluctuations shows that the peak dominant frequency of the pressure fluctuations is about 1.5–2.5 Hz which is corresponding to the macrostructures of the bed. Accordingly, the onset of turbulent fluidization regime was detected through standard deviation analysis. It was shown that the simple analysis techniques still have interesting information about hydrodynamics of fluidization and they can accurately estimate transition between dominant flow structures of a gas–solid fluidized bed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call