Abstract

AbstractThe cone penetration test (CPT) contributes to the design and analysis of piles regarding geometry, installation effect, and pile capacity (shaft and toe resistance). MiniCone, as an alternative to CPT sounding, has been used to carry out field and laboratory investigations by physical modeling. More tests can be practically carried out through light equipment and small soil mass, involving fewer errors caused by boundary conditions. Furthermore, it can be used for in situ testing, such as quality control, assessment of ground improvement, and subgrade characterization. A database comprising MiniCone and CPT records in field and physical modeling is proposed with a variety of cone diameters. The case study records in the database have been obtained from 140 tests compiled from data from 26 sources. The sources include the results of 20 physical modelings and field data from six sites in 10 countries. The data comprise MiniCone and CPT cone tip resistance (), and sleeve friction (). The different cones are used in sandy, silty sand, and clayey soils via simple chambers (1 g), calibration chambers, and frustum confining vessels. In addition, correlations were found in penetration records in terms of physical modeling types, cone diameters, penetration rates, and soil densities. Moreover, and are related to capacities of pile toes and shafts using proper correlation coefficients less than unity, respectively. Correlations and dominant factors in geotechnical practice between MiniCone, CPT, and pile have been reviewed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call