Abstract

The easter gene, required for the development of all lateral and ventral pattern elements in the Drosophila embryo, appears to encode an extracellular serine protease. Dominant easter alleles increase the number of cells that give rise to lateral and ventral structures. We have found that nine dominant and four recessive mutations are caused by single amino acid substitutions at conserved sites in the putative serine protease catalytic domain. The activity of dominant products was assayed by injecting in vitro synthesized transcripts from the dominant alleles into young embryos. The results suggest that the dominant easter products cleave the normal substrate, but fail to respond to a spatially asymmetric regulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.