Abstract

In this paper stochastic models in data envelopment analysis (DEA) are developed by taking into account the possibility of random variations in input-output data, and dominance structures on the DEA envelopment side are used to incorporate the modelbuilder's preferences and to discriminate efficiencies among decision making units (DMUs). The efficiency measure for a DMU is defined via joint dominantly probabilistic comparisons of inputs and outputs with other DMUs and can be characterized by solving a chance constrained programming problem. Deterministic equivalents are obtained for multivariate symmetric random errors and for a single random factor in the production relationships. The goal programming technique is utilized in deriving linear deterministic equivalents and their dual forms. The relationship between the general stochastic DEA models and the conventional DEA models is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.