Abstract

We study the effectiveness of iterated elimination of strictly-dominated actions in random games. We show that dominance solvability of games is vanishingly small as the number of at least one player's actions grows. Furthermore, conditional on dominance solvability, the number of iterations required to converge to Nash equilibrium grows rapidly as action sets grow. Nonetheless, when games are highly imbalanced, iterated elimination simplifies the game substantially by ruling out a sizable fraction of actions. Technically, we illustrate the usefulness of recent combinatorial methods for the analysis of general games.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.