Abstract
BackgroundHuman herpesvirus 6 (HHV-6), mostly variant B reactivation in renal transplant patients has been published by other authors, but the pathogenetic role of HHV-6 variant A has not been clarified. Our aims were to examine the prevalence of HHV-6, to determine the variants, and to investigate the interaction between HHV-6 viraemia, human cytomegalovirus (HCMV) infection and clinical symptoms.MethodsVariant-specific HHV-6 nested PCR and quantitative real-time PCR were used to examine blood samples from renal transplant patients and healthy blood donors for the presence and load of HHV-6 DNA and to determine the variants. Active HHV-6 infection was proved by RT-PCR, and active HCMV infection was diagnosed by pp65 antigenaemia test.ResultsHHV-6 viraemia was significantly more frequent in renal transplant patients compared to healthy blood donors (9/200 vs. 0/200; p = 0.004), while prevalence of HHV-6 latency was not significantly different (13/200 vs. 19/200; p > 0.05). Dominance of variant A was revealed in viraemias (8/9), and the frequency of HHV-6A was significantly higher in active infections compared with latency in renal transplant patients (8/9 vs. 2/13; p = 0.0015). Latency was established predominantly by HHV-6B both in renal transplant patients and in healthy blood donors (11/13 and 18/19). There was no statistical significant difference in occurrence of HCMV and HHV-6 viraemia in renal transplant patients (7/200 vs. 9/200). Statistical analysis did not reveal interaction between HHV-6 viraemia and clinical symptoms in our study.ConclusionsContrary to previous publications HHV-6A viraemia was found to be predominant in renal transplant patients. Frequency of variant A was significantly higher in cases of active infection then in latency.
Highlights
Human herpesvirus 6 (HHV-6), mostly variant B reactivation in renal transplant patients has been published by other authors, but the pathogenetic role of HHV-6 variant A has not been clarified
The level of HHV-6A DNA in plasma samples ranged from 7.5 × 102 to 6 × 105 genome equivalent/mL (GEq/mL), while the copy number of HHV-6B genome was below the limit of detection
In white blood cells (WBC) samples HHV-6 DNA load ranged from 5.1 × 102 to 2.1 × 106 GEq/1.5 x106 cells
Summary
Human herpesvirus 6 (HHV-6), mostly variant B reactivation in renal transplant patients has been published by other authors, but the pathogenetic role of HHV-6 variant A has not been clarified. Our aims were to examine the prevalence of HHV-6, to determine the variants, and to investigate the interaction between HHV-6 viraemia, human cytomegalovirus (HCMV) infection and clinical symptoms. Immunosuppression associated with renal transplantation presents a risk for opportunistic infections, reactivations and reinfections. Human herpesvirus 6 (HHV-6) is an important pathogen in transplant recipients. HHV-6 is ubiquitous in the population, primary infection occurs in early childhood after which latency is established and the seropositivity exceeds 90% [1]. Primary infection almost always occurs with HHV-6B [3], but it is not clarified when HHV-6A infection takes place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.