Abstract

AbstractOrganic light‐emitting devices (OLEDs) are widely used for mobile displays, but the relatively short lifetime of blue OLEDs remains a challenge in many applications. Typically, instability is viewed as a material‐specific chemical degradation problem. It is known to be alleviated by reducing the operating current or otherwise decreasing the exciton density. It is shown here that this view is incomplete. For archetypical phosphorescent materials, it is observed that the dependence of photostability on the triplet exciton lifetime follows a cubic power law, steeper than its dependence on exciton density. It is demonstrated that the triplet exciton lifetime not only determines the energy stored within an OLED, it also determines the loss in luminescence by controlling the yield of quenching by defects. The dominant role of the triplet exciton lifetime suggests that the stability of the best OLED materials can be significantly improved via rapid extraction of the energy stored in triplet excitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.