Abstract

Replacing a monoanionic cyclopentadienyl (Cp) ligand in dysprosium single‐molecule magnets (SMMs) with a dianionic cyclobutadienyl (Cb) ligand in the sandwich complexes [(η4‐Cb′′′′)Dy(η5‐C5Me4 t Bu)(BH4)]− (1), [(η4‐Cb′′′′)Dy(η8‐Pn†)K(THF)] (2) and [(η4‐Cb′′′′)Dy(η8‐Pn†)]− (3) leads to larger energy barriers to magnetization reversal (Cb′′′′=C4(SiMe3)4, Pn†=1,4‐di(tri‐isopropylsilyl)pentalenyl). Short distances to the Cb′′′′ ligands and longer distances to the Cp ligands in 1–3 are consistent with the crystal field splitting being dominated by the former. Theoretical analysis shows that the magnetic axes in the ground Kramers doublets of 1–3 are oriented towards the Cb′′′′ ligands. The theoretical axiality parameter and the relative axiality parameter Z and Z rel are introduced to facilitate comparisons of the SMM performance of 1–3 with a benchmark SMM. Increases in Z and Z rel when Cb′′′ replaces Cp signposts a route to SMMs with properties that could surpass leading systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call