Abstract
An automorphism of a generalized quadrangle is called domestic if it maps no chamber, which is here an incident point-line pair, to an opposite chamber. We call it point-domestic if it maps no point to an opposite one and line-domestic if it maps no line to an opposite one. It is clear that a duality in a generalized quadrangle is always point-domestic and linedomestic. In this paper, we classify all domestic automorphisms of generalized quadrangles. Besides three exceptional cases occurring in the small quadrangles with orders (2, 2), (2, 4), and (3, 5), all domestic collineations are either point-domestic or line-domestic. Up to duality, they fall into one of three classes: Either they are central collineations, or they fix an ovoid, or they fix a large full subquadrangle. Remarkably, the three exceptional domestic collineatons in the small quadrangles mentioned above all have order 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.