Abstract

Wild emmer wheat, Triticum dicoccoides, is the progenitor of modern tetraploid and hexaploid cultivated wheats. Our objective was to map domestication-related quantitative trait loci (QTL) in T. dicoccoides. The studied traits include brittle rachis, heading date, plant height, grain size, yield, and yield components. Our mapping population was derived from a cross between T. dicoccoides and Triticum durum. Approximately 70 domestication QTL effects were detected, nonrandomly distributed among and along chromosomes. Seven domestication syndrome factors were proposed, each affecting 5-11 traits. We showed: (i) clustering and strong effects of some QTLs; (ii) remarkable genomic association of strong domestication-related QTLs with gene-rich regions; and (iii) unexpected predominance of QTL effects in the A genome. The A genome of wheat may have played a more important role than the B genome during domestication evolution. The cryptic beneficial alleles at specific QTLs derived from T. dicoccoides may contribute to wheat and cereal improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.