Abstract

Companion animals serve as our best friends, confidants, and family members. Thus, disease and antibiotic resistance gene transmission in pets and humans must be sought out. The study aimed to identify the common pathogenic Escherichia coli (E.coli) in pet cats and the antibiotic resistance patterns and resistant gene distribution. Samples (n = 210) were collected from different veterinary clinics in Bangladesh’s cities of Mymensingh and Dhaka. Pathogenic E. coli was identified using conventional and molecular approaches. The disc diffusion method assessed the resistance profile against 12 antibiotics, and PCR was used to identify the beta-lactam resistance genes. The prevalence of the stx-1 gene was found to be 2.86%, whereas the rfbO157 prevalence was found to be 1.90% in cats. The stx-1 gene (n = 6) was 100% resistant to erythromycin and imipenem, whereas 100% sensitive to chloramphenicol. In turn, the rfbO157 gene (n = 4) exhibited 100% resistance to erythromycin, imipenem, cefixime, and azithromycin. In addtion, we identified genes that exhibit resistance to beta-lactam antibiotics (100% blaTEM, 40% blaCTX-M, 40% blaSHV2). This study found shiga-toxin producing and extended-spectrum beta-lactamase (ESBL) producing E. coli for the first time in pet cats of Bangladesh. Furthermore, the antimicrobial resistance (AMR) profile of the isolated strains refers to the occurrence of multidrug, which concerns cats and their owners. The existence of these genesin non-diarrheic pet animal isolates indicates that domestic pets may serve as a reservoir for human infection. Thus, one health strategy comprising animal and human health sectors, governments, together with stakeholders is needed to confront multidrug-resistant E. coli infections in Bangladesh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call