Abstract

ObjectivesIn Iran, pigeons are kept and bred on the roofs of houses, which indicates the potential significance of pigeons in the dispersal of antimicrobial resistant Escherichia coli strains. Here we characterized antimicrobial resistance genotypes in relation to phenotypic presentations and phylogenetic backgrounds of the E. coli isolates from household pigeons in Kerman in southeast Iran. MethodsTotally, 152 faecal E. coli isolates from domestic and household pigeons were screened for 13 antimicrobial resistance genes, blaTEM, blaSHV, blaCTX-M, sulI, sulII, dhfrI, dhfrV, aadA, aac(3)-I, tetA, tetB, floR and qnrA, by conventional polymerase chain reaction (PCR) technique. Clermont phylogenetic background of E. coli strains was studied and antibiotic resistance of all strains was assessed for seven antibiotics. ResultsThe antimicrobial resistance genes blaTEM, tetA, tetB and aadA were detected in 52.6%, 6.5%, 6.5% and 5.9% of the isolates, respectively. PCR phylotyping revealed that a significant number of isolates within A0 (54%), A1 (70%), B1 (57.6%), B22 (75%) and D1 (87.5%) phylogroups were positive for the studied resistance genes. One phenotypic resistance pattern (trimethoprim-sulfamethoxazole) was associated with the presence of the corresponding gene sul2. ConclusionsAn alarming rate of phenotypic resistance was observed in this study. Many isolates were positive for the screened resistance genes. According to the phylogenetic background, most resistant isolates belonged to the commensal phylotypes, representing significant role of commensal strains as a source of resistance genes. These findings highlight the role of the pigeon as disseminator of resistant E. coli strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call