Abstract

In this paper, we carried out experiments to investigate dome-shaped microlaser based on the whispering gallery modes for remote wall temperature sensing. The dome-shaped resonator was made of Norland blocking adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. Two different configurations are considered: (i) resonator placed on top of a thin layer of 10:1 polydimethylsiloxane (10:1 PDMS), and (ii) resonator encapsulated in a thin layer of 10:1 PDMS. The microlaser was remotely pumped using a Q switch Nd:YAG laser with pulse repetition rate of 10 Hz, pulse linewidth of 10 ns, and pulse energy of 100 μJ/cm². The excited optical modes showed an average optical quality factor of 10⁴ for both configurations. In addition, the measurements showed sensitivity to temperature of ~0.06 nm/°C and a resolution of 1°C for both configurations. This sensitivity was limited by the resolution of the experimental setup used in these studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.