Abstract
Given a graph G, we say that a subset D of the vertex set V is a dominating set if it is near all the vertices, in that every vertex outside of D is adjacent to a vertex in D. A domatic k-partition of G is a partition of V into k dominating sets. In this paper, we will consider issues of computability related to domatic partitions of computable graphs. Our investigation will center on answering two types of questions for the case when k = 3. First, if domatic 3-partitions exist in a computable graph, how complicated can they be? Second, a decision problem: given a graph, how difficult is it to decide whether it has a domatic 3-partition? We will completely classify this decision problem for highly computable graphs, locally finite computable graphs, and computable graphs in general. Specifically, we show the decision problems for these kinds of graphs to be $${\Pi^{0}_{1}}$$ ? 1 0 -, $${\Pi^{0}_{2}}$$ ? 2 0 -, and $${\Sigma^{1}_{1}}$$ Σ 1 1 -complete, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.