Abstract

Here, we report the folding and assembly of a Pyrococcus furiosus-derived protein, L-asparaginase (PfA). PfA functions as a homodimer, with each monomer made of distinct N- and C-terminal domains. The purified individual domains as well as single Trp mutant of each domain were subjected to chemical denaturation/renaturation and probed by combination of spectroscopic, chromatographic, quenching and scattering techniques. We found that the N-domain acts like a folding scaffold and assists the folding of remaining polypeptide. The domains displayed sequential folding with the N-domain having higher thermodynamic stability. We report that the extreme thermal stability of PfA is due to the presence of high intersubunit associative forces supported by extensive H-bonding and ionic interactions network. Our results proved that folding cooperativity in a thermophilic, multisubunit protein is dictated by concomitant folding and association of constituent domains directly into a native quaternary structure. This report gives an account of the factors responsible for folding and stability of a therapeutically and industrially important protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.