Abstract
Naturally occurring mutations are useful in identifying domains that are important for protein function. We studied a mutation in the elastin gene, 800-3G>C, a common disease allele for SVAS (supravalvular aortic stenosis). We showed in primary skin fibroblasts from two different SVAS families that this mutation causes skipping of exons 16-17 and results in a stable mRNA. Tropoelastin lacking domains 16-17 (Delta16-17) was synthesized efficiently and secreted by transfected retinal pigment epithelium cells, but showed the deficient deposition into the extracellular matrix compared with normal as demonstrated by immunofluorescent staining and desmosine assays. Solid-phase binding assays indicated normal molecular interaction of Delta16-17 with fibrillin-1 and fibulin-5. However, self-association of Delta16-17 was diminished as shown by an elevated coacervation temperature. Moreover, negative staining electron microscopy confirmed that Delta16-17 was deficient in forming fibrillar polymers. Domain 16 has high homology with domain 30, which can form a beta-sheet structure facilitating fibre formation. Taken together, we conclude that domains 16-17 are important for self-association of tropoelastin and elastic fibre formation. This study is the first to discover that domains of elastin play an essential role in elastic fibre formation by facilitating homotypic interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.