Abstract

Domain adaptation aims to generalize a model from a source domain to tackle tasks in a related but different target domain. Traditional domain adaptation algorithms assume that enough labeled data, which are treated as the prior knowledge are available in the source domain. However, these algorithms will be infeasible when only a few labeled data exist in the source domain, thus the performance decreases significantly. To address this challenge, we propose a Domain-invariant Graph Learning (DGL) approach for domain adaptation with only a few labeled source samples. Firstly, DGL introduces the Nyström method to construct a plastic graph that shares similar geometric property with the target domain. Then, DGL flexibly employs the Nyström approximation error to measure the divergence between the plastic graph and source graph to formalize the distribution mismatch from the geometric perspective. Through minimizing the approximation error, DGL learns a domain-invariant geometric graph to bridge the source and target domains. Finally, we integrate the learned domain-invariant graph with the semi-supervised learning and further propose an adaptive semi-supervised model to handle the cross-domain problems. The results of extensive experiments on popular datasets verify the superiority of DGL, especially when only a few labeled source samples are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.