Abstract

The interplay between charge, spin, and heat currents in magnetic nano systems subjected to a temperature gradient has lead to a variety of novel effects and promising applications studied in the fast-growing field of spincaloritronics. Here we explore the magnetothermoelectrical properties of an individual magnetic domain wall in a permalloy nanowire. In thermal gradients of the order of few Kelvin per micrometer along the long wire axis, we find a clear magneto-Seebeck signature due to the presence of a single domain wall. The observed domain wall magneto-Seebeck effect can be explained by the magnetization-dependent Seebeck coefficient of permalloy in combination with the local spin configuration of the domain wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call