Abstract

Dynamics of the domain wall between circular magnetic domains in amorphous ferromagnetic Co68.2Fe4.3Si12.5B15 wire was studied in a small region around the domain wall equilibrium position in an inhomogeneous magnetic field. The wire was prepared using the in-rotating-water-quenching technique. Small helical anisotropy was induced in the wire by current annealing and simultaneous application of tensile stress and torsion. The inhomogeneous magnetic field acted on domain wall by restoring force directly proportional to the displacement of the domain wall from its equilibrium position. Domain wall position was monitored by circular magnetic flux measurements from which it results that domain wall motion can be modeled by the motion of a very strongly damped pendulum. The value of domain wall mobility obtained from these experiments is in good agreement with the values calculated and measured for domain wall driven by a constant magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.