Abstract

We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii–Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter, we propose the concept of a diode, which implements the filtering of domain walls of a certain topological charge and helicity. We base our study on the phenomenological Landau–Lifshitz–Gilbert equations with additional Zhang–Li spin-transfer terms using a collective variable approach. In the effective equations of motion, the gradients of DMI play the role of a driving force, which competes with the current driving. All analytical predictions are confirmed by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.