Abstract

We consider magic-angle twisted bilayer graphene (TBG) at filling $\nu=+3$, where experiments have observed a robust quantized anomalous Hall effect. This has been attributed to the formation of a valley- and spin-polarized Chern insulating ground state that spontaneously breaks time-reversal symmetry, and is stabilized by a hexagonal boron nitride (hBN) substrate. We identify three different types of domain wall, and study their properties and energetic selection mechanisms via theoretical arguments and Hartree-Fock calculations adapted to deal with inhomogeneous moir\'e systems. We comment on the implications of these results for transport and scanning probe experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call