Abstract

Medical images are acquired through diverse imaging systems, with each system employing specific image reconstruction techniques to transform sensor data into images. In MRI, sensor data (i.e., k-space data) is encoded in the frequency domain, and fully sampled k-space data is transformed into an image using the inverse Fourier Transform. However, in efforts to reduce acquisition time, k-space is often subsampled, necessitating a sophisticated image reconstruction method beyond a simple transform.The proposed approach addresses this challenge by training a model to learn domain transform, generating the final image directly from undersampled k-space input. Significantly, to improve the stability of reconstruction from randomly subsampled k-space data, folded images are incorporated as supplementary inputs in the dual-input ETER-net. Moreover, modifications are made to the formation of inputs for the bi-RNN stages to accommodate non-fixed k-space trajectories.Experimental validation, encompassing both regular and irregular sampling trajectories, validates the method's effectiveness. The results demonstrated superior performance, measured by PSNR, SSIM, and VIF, across acceleration factors of 4 and 8. In summary, the dual-input ETER-net emerges as an effective both regular and irregular sampling trajectories, and accommodating diverse acceleration factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.