Abstract

The domain structures of poled and depoled lead-based relaxor ferroelectric solid-solution single-crystal 24Pb(In(1/2)Nb(1/2))O(3)-46Pb (Mg(1/3)Nb(2/3))O(3)-30PbTio(3) are studied by polarized light microscopy, piezoresponse force microscopy (PFM), scanning electron microscopy (SEM), and dielectric spectroscopy. The domain structures in the nonergodic relaxor state are found by PFM to consist of tweed structures resulting from random fields from the competition between ferroelectric and antiferroelectric distortion, and planar defects found by SEM are treated as dislocations associated with strain accommodation, resulting in superior piezoelectric properties. This domain structure is found to be connected with hierarchical domain structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.