Abstract

This investigation presents an approach to domain-specific FAQ (frequently-asked question) retrieval using independent aspects. The data analysis classifies the questions in the collected QA (question-answer) pairs into ten question types in accordance with question stems. The answers in the QA pairs are then paragraphed and clustered using latent semantic analysis and the K-means algorithm. For semantic representation of the aspects, a domain-specific ontology is constructed based on WordNet and HowNet. A probabilistic mixture model is then used to interpret the query and QA pairs based on independent aspects; hence the retrieval process can be viewed as the maximum likelihood estimation problem. The expectation-maximization (EM) algorithm is employed to estimate the optimal mixing weights in the probabilistic mixture model. Experimental results indicate that the proposed approach outperformed the FAQ-Finder system in medical FAQ retrieval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.