Abstract

The domain-size dependence of the piezoelectric properties of ferroelectrics is investigated using a continuum Ginzburg-Landau model that incorporates long-range elastic and electrostatic interactions. Microstructures with the desired domain sizes are created by quenching from the paraelectric phase by biasing the initial conditions. Three different two-dimensional microstructures with different sizes of the 90\ifmmode^\circ\else\textdegree\fi{} domains are simulated. An electric field is applied along the polar as well as nonpolar directions and the piezoelectric response is simulated as a function of domain size for both cases. The simulations show that the piezoelectric coefficients are enhanced by reducing the domain size, consistent with recent experimental results of Wada and Tsurumi [Br. Ceram. Trans. 103, 93 (2004)] on domain-engineered ${\mathrm{BaTiO}}_{3}$ single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.