Abstract

Mammalian metallothioneins (MTs) are small, metal binding proteins implicated in cellular metal ion homeostasis and heavy metal detoxification. Divalent, metal-saturated MTs form two distinct domains; the N-terminal β domain binds three metals using nine Cys residues, and the C-terminal α domain binds four metals with 11 Cys residues. Domain selection during zinc binding and cadmium exchange to human MT1A was examined using a series of competition reactions with mixtures of the isolated domain fragments. These experiments were conducted at two biologically significant pH conditions where MTs exist in vivo. Neither zinc binding nor cadmium exchange showed any significant degree of specificity or selectivity based on detailed analysis of electrospray ionization mass spectrometric and circular dichroic data. Under acidic conditions, zinc binding and cadmium exchange showed slight α domain selectivity because of the increased preference for cooperative clustering of the α domain. Modeling of the reactions showed that at both physiological (7.4) and acidic (5.8) pHs, zinc binding and cadmium exchanges occur essentially randomly between the two fragments. The metal binding affinity distributions between the domain fragments are comingled and not significantly separated as required for a domain specific mechanism. The models show rather that the order of the binding events follows the order of the binding affinities that are distributed across both domains and that this can be considered quantitatively by the KF(Cd)/KF(Zn) binding constant ratio for each metal bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.