Abstract
BackgroundExpression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics.ResultsWith bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies.ConclusionThe DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics.
Highlights
Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today
high throughput (HTP) cloning of 366 open reading frame (ORF) The GATEWAY system is a suitable method for HTP cloning in 96-well plates
In this paper we presented an effective HTP cloning pipeline and a domain/domain boundary prediction (DDBP) strategy
Summary
Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. The robotic pipeline is fully operational and has produced a large number of soluble recombinant proteins in E. coli using the open reading frame cDNA library (ORFeome) for C. elegans and human genomes [5,6]. In a number of cases, including our own results, soluble proteins could be expressed in E. coli when a smaller fragment derived from the ORF was used for expression [7,8,9,10]. Compared to expressing soluble proteins carrying GATEWAY tags due to cloning artifacts, the soluble expression rate was increased from 1.3% to 27.6% when the GATEWAY tags were not included, and a 41.7% rate of soluble expression was achieved when the identified fragment without both
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.