Abstract

Growing evidence shows that subjective cognitive decline (SCD) among elderly individuals is the possible pre-clinical stage of Alzheimer's disease (AD). To prevent the potential disease conversion, it is critical to investigate biomarkers for SCD progression. Previous learning-based methods employ T1-weighted magnetic resonance imaging (MRI) data to aid the future progression prediction of SCD, but often fail to build reliable models due to the insufficient number of subjects and imbalanced sample classes. A few studies suggest building a model on a large-scale AD-related dataset and then applying it to another dataset for SCD progression via transfer learning. Unfortunately, they usually ignore significant data distribution gaps between different centers/domains. With the prior knowledge that SCD is at increased risk of underlying AD pathology, we propose a domain-prior-induced structural MRI adaptation (DSMA) method for SCD progression prediction by mitigating the distribution gap between SCD and AD groups. The proposed DSMA method consists of two parallel feature encoders for MRI feature learning in the labeled source domain and unlabeled target domain, an attention block to locate potential disease-associated brain regions, and a feature adaptation module based on maximum mean discrepancy (MMD) for cross-domain feature alignment. Experimental results on the public ADNI dataset and an SCD dataset demonstrate the superiority of our method over several state-of-the-arts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.