Abstract

In this article, we construct a numerical method for a stochastic version of the Susceptible–Infected–Susceptible (SIS) epidemic model, expressed by a suitable stochastic differential equation (SDE), by using the semi-discrete method to a suitable transformed process. We prove the strong convergence of the proposed method, with order 1, and examine its stability properties. Since SDEs generally lack analytical solutions, numerical techniques are commonly employed. Hence, the research will seek numerical solutions for existing stochastic models by constructing suitable numerical schemes and comparing them with other schemes. The objective is to achieve a qualitative and efficient approach to solving the equations. Additionally, for models that have not yet been proposed for stochastic modeling using SDEs, the research will formulate them appropriately, conduct theoretical analysis of the model properties, and subsequently solve the corresponding SDEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.