Abstract
Periodical domain structuring by focused electron beam irradiation of MgO-doped lithium niobate (MgOCLN) single crystalline plate covered by resist layer was studied both experimentally and by computer simulation. The dependences of domain size on the charge dose and distance between isolated domains were measured. It has been shown that the quality of periodical domain pattern depends on the thickness of resist layer and electron energy. The experimentally obtained periodic domain structures have been divided into four types. The irradiation parameters for the most uniform patterning were obtained experimentally. It was shown by computer simulation that the space charge slightly touching the crystal surface produced the maximum value of electric field at the resist/LN interface thus resulting in the best pattern quality. The obtained knowledge allowed us to optimize the poling process and to make the periodical domain patterns in 1-mm-thick wafers with an area up to 1 × 5 mm2 and a period of 6.89 μm for green light second harmonic generation. Spatial distribution of the efficiency of light frequency conversion confirmed the high homogeneity of the tailored domain patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.