Abstract
A large number of non-linear hardware and control units exists in power electronic system used in grid connected devices. The analytical transient stability analysis of grid-connected converters presents numerous difficulties. A common method to tackle this problem is the stability analysis using Lyapunov’s method. By applying this method, difficulties arise not only from finding a suitable Lyapunov function, but also from checking the constraint of Lyapunov stability. If the appropriate Lyapunov function is a high-order polynomial, it is very challenging to test if it meets the constraints of Lyapunov stability in certain regions. In this paper, the sum-of-squares programming method is used to obtain the estimation of a converter’s domain of attraction with a relatively small number of iterations compared to classically applied methods, such as the Monte Carlo method. The estimation of the domain of attraction are verified by time-domain simulations and StarSim’s controller hardware-in-the-loop tests in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.