Abstract

Noisy image segmentation is a hot topic in natural, medical, and remote sensing image processing. It is among the non-trivial problems of computer vision having to address denoising and segmentation at the same time. Fuzzy C-means (FCM) is a clustering algorithm that has been shown to be effective at dealing with both segmentation-oriented denoising and segmentation at the same time. Moreover, with a high level of noise and other imaging artifacts, FCM loses its ability to perform image segmentation effectively. This paper introduces a Particle Swarm Optimization (PSO)-based feature enhancement approach in the wavelet domain for noisy image segmentation. This approach applies adaptive wavelet shrinkage using FCM clustering performance as an evaluation mechanism and also as the segmentation algorithm. The PSO-based process helps to enhance intensity features for clustering-based denoising, and also provides adaptivity for the system that performs well on a range of real, synthetic, and simulated noisy images with different noise levels and range/spatial properties. Furthermore, the algorithm applies edge enhancement based on Canny edge detector in order to further improve accuracy. Experiments are presented using three different datasets each degraded with different types of common noise. The presented algorithms show effective and consistent performance over a range of severe noise levels without the need for any parameter tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call