Abstract
Multi-Domain Face Anti-Spoofing (MD-FAS) is a practical setting that aims to update models on new domains using only novel data while ensuring that the knowledge acquired from previous domains is not forgotten. Prior methods utilize the responses from models to represent the previous domain knowledge or map the different domains into separated feature spaces to prevent forgetting. However, due to domain gaps, the responses of new data are not as accurate as those of previous data. Also, without the supervision of previous data, separated feature spaces might be destroyed by new domains while updating, leading to catastrophic forgetting. Inspired by the challenges posed by the lack of previous data, we solve this issue from a new standpoint that generates hallucinated previous data for updating FAS model. To this end, we propose a novel Domain-Hallucinated Updating (DHU) framework to facilitate the hallucination of data. Specifically, Domain Information Explorer learns representative domain information of the previous domains. Then, Domain Information Hallucination module transfers the new domain data to pseudo-previous domain ones. Moreover, Hallucinated Features Joint Learning module is proposed to asymmetrically align the new and pseudo-previous data for real samples via dual levels to learn more generalized features, promoting the results on all domains. Our experimental results and visualizations demonstrate that the proposed method outperforms state-of-the-art competitors in terms of effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.