Abstract

The problem of domain generalization is to learn, given data from different source distributions, a model that can be expected to generalize well on new target distributions which are only seen through unlabeled samples. In this paper, we study domain generalization as a problem of functional regression. Our concept leads to a new algorithm for learning a linear operator from marginal distributions of inputs to the corresponding conditional distributions of outputs given inputs. Our algorithm allows a source distribution-dependent construction of reproducing kernel Hilbert spaces for prediction, and, satisfies finite sample error bounds for the idealized risk. Numerical implementations and source code are available 1 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.