Abstract

We employ Monte Carlo simulations in order to study dynamics of the magnetization and domain growth processes in the random-field Ising models with uniform and Gaussian random field distributions of varying strengths. Domain sizes are determined directly using the Hoshen-Kopelman algorithm. For either case, both the magnetization and the largest domain growth dynamics are found to follow the power law with generally different exponents, which exponentially decay with the random field strength. Moreover, for relatively small random fields the relaxation is confirmed to comply with different regimes at early and later times. No significant differences were found between the results for the uniform and Gaussian distributions, in accordance with the universality assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.