Abstract

We introduce a novel approach that combines the scaled boundary finite element method (SBFEM) with a mortar coupling to enhance the computational modelling of elastic wave propagation and interaction with local features in the ultrasonic range. The key objective is to achieve decoupling between different regions of interest, enabling independent meshes for the zones where waves either propagate or interact with localised discontinuities in the elastic media. This decoupling allows us to exploit the benefits offered by various SBFEM formulations. Thus, we can select the most suitable solution for each specific region. An important concept we emphasise is the differentiation between the near field and far field regions. The near field encompasses zones where the precise representation of small features compared to the wavelength is crucial. At the same time, the far field comprises homogeneous regions where the waves propagate without interactions, eventually radiating towards infinity if the domain is unbounded. By separating these two zones, we can improve the computational performance by employing finer discretisation only where necessary. Furthermore, this decoupling enables the reuse of far field models in parametric analyses, making it highly valuable for scenarios focused particularly on local elastic wave interactions. This approach offers considerable potential in such cases. The modelling technique is validated, and its potential is demonstrated through practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.