Abstract
In this work, we consider the time-harmonic Maxwell's equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Selecciones Matemáticas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.