Abstract
In this paper, we develop domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations defined on unbounded domains. We introduce an orthogonal family of new generalized Laguerre functions, with the weight function x ? , ? being any real number. The corresponding quasi-orthogonal approximation and Gauss-Radau type interpolation are investigated, which play important roles in the related spectral and collocation methods. As examples of applications, we propose the domain decomposition spectral methods for two fourth order problems, and the spectral method with essential imposition of boundary conditions. The spectral accuracy is proved. Numerical results demonstrate the effectiveness of suggested algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.