Abstract

This paper deals with the construction of Schwarz Waveform Relaxation (SWR) methods for fractional diffusion-wave equations. SWR methods are a class of domain decomposition algorithms to solve evolution problems in parallel and have been mainly developed and analysed for several kinds of PDEs. We first analyse the convergence behaviour of the classical SWR method applied to fractional diffusion-wave equations, showing that Dirichlet boundary conditions at the artificial interfaces slow down the convergence of the method. Then, we construct optimal SWR methods, by providing the transmission conditions which assure convergence in two iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.