Abstract
AbstractAdvection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.