Abstract

Krylov subspace iterative techniques consist of finding the solution of a scattering problem as a linear combination of vectors obtained through successive matrix-vector multiplications. This letter extends this approach to domain-decomposition. Here, on each subdomain, a subspace is obtained by constructing the segments of each generating vector associated with the subdomain and by weighting these segments independently, which provides more degrees of freedom. The method is tested for scattering by a sphere and a rectangular plate, as well as radiation from connected arrays with strongly coupled antenna elements. It is shown that substantial computational savings can be obtained for the sphere and the array. This opens up new perspectives for faster solutions of multiscaled problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.