Abstract

In this paper domain decomposition algorithms for mixed finite element methods for linear second-order elliptic problems in R 2 \mathbb {R}^{2} and R 3 \mathbb {R}^{3} are developed. A convergence theory for two-level and multilevel Schwarz methods applied to the algorithms under consideration is given. It is shown that the condition number of these iterative methods is bounded uniformly from above in the same manner as in the theory of domain decomposition methods for conforming and nonconforming finite element methods for the same differential problems. Numerical experiments are presented to illustrate the present techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.