Abstract

The proton pumping activity of the eukaryotic vacuolar ATPase (V-ATPase) is regulated by a unique mechanism that involves reversible enzyme dissociation. In yeast, under conditions of nutrient depletion, the soluble catalytic V(1) sector disengages from the membrane integral V(o), and at the same time, both functional units are silenced. Notably, during enzyme dissociation, a single V(1) subunit, C, is released into the cytosol. The affinities of the other V(1) and V(o) subunits for subunit C are therefore of particular interest. The C subunit crystal structure shows that the subunit is elongated and dumbbell-shaped with two globular domains (C(head) and C(foot)) separated by a flexible helical neck region (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1148-1152). We have recently shown that subunit C is bound in the V(1)-V(o) interface where the subunit is in contact with two of the three peripheral stators (subunit EG heterodimers): one via C(head) and one via C(foot) (Zhang, Z., Zheng, Y., Mazon, H., Milgrom, E., Kitagawa, N., Kish-Trier, E., Heck, A. J., Kane, P. M., and Wilkens, S. (2008) J. Biol. Chem. 283, 35983-35995). In vitro, however, subunit C binds only one EG heterodimer (Féthière, J., Venzke, D., Madden, D. R., and Böttcher, B. (2005) Biochemistry 44, 15906-15914), implying that EG has different affinities for the two domains of the C subunit. To determine which subunit C domain binds EG with high affinity, we have generated C(head) and C(foot) and characterized their interaction with subunit EG heterodimer. Our findings indicate that the high affinity site for EGC interaction is C(head). In addition, we provide evidence that the EGC(head) interaction greatly stabilizes EG heterodimer.

Highlights

  • Grant GM58600. 1 To whom correspondence should be addressed

  • At pH 6 – 6.5, MBP is negatively charged and binds to dialysis and passed over an anion exchange (DEAE), whereas subunit C and its domains can be collected from the flow through and wash steps

  • The eukaryotic V-ATPase is unique among rotary ATPases in its subunit composition and its mode of regulation by reversible dissociation

Read more

Summary

Introduction

Grant GM58600. 1 To whom correspondence should be addressed. Tel.: 315-464-8703; E-mail: extracellular space. The crystal structure of the yeast C subunit (Protein Data Bank entry 1u7l) [23] shows that the molecule is folded as an elongated hairpin with a long helical region (neck), flanked by two globular domains (Cfoot and Chead; Fig. 2, A and B).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.