Abstract

Parallel and distributed computers have been shown to provide the necessary computational power to solve large-scale engineering problems. However, in order for this computation style to be effectively used, efficient computational algorithms must be devised. In this work, a domain-by-domain algorithm is developed for the parallel solution of nonlinear structural dynamics problems. In the proposed algorithm, the original structure is partitioned into a number of subdomains. Each subdomain is solved independently and, therefore, concurrently using a traditional direct-solution method. Finally, the solution for the interface degrees of freedom between neighboring subdomains is obtained by enforcing compatibility and equilibrium using an iterative procedure. The nonlinear version of the algorithm involves two iterations: The nonlinear dynamic equilibrium iteration and the interface equilibrium and compatibility iteration. The integration of these two iterations is investigated and two strategies are developed. It is found that the strategy in which the two iterations are isolated is the most efficient. As a demonstration, the fully nonlinear transient analysis of a 20-story model building is carried out. Excellent accuracy in the solution and significant speed up values are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.