Abstract
Ab initio composite approaches have been utilized to model and predict main group thermochemistry within 1 kcal mol-1 , on average, from well-established reliable experiments, primarily for molecules with less than 30 atoms. For molecules of increasing size and complexity, such as biomolecular complexes, composite methodologies have been limited in their application. Therefore, the domain-based local pair natural orbital (DLPNO) methods have been implemented within the correlation consistent composite approach (ccCA) framework, namely DLPNO-ccCA, to reduce the computational cost (disk space, CPU (central processing unit) time, memory) and predict energetic properties such as enthalpies of formation, noncovalent interactions, and conformation energies for organic biomolecular complexes including one of the largest molecules examined via composite strategies, within 1 kcal mol-1 , after calibration with 119 molecules and a set of linear alkanes. © 2019 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.