Abstract
Ph-negative Myeloproliferative Neoplasm is a rare yet dangerous disease that can turn into more severe forms of disorders later on. Clinical diagnosis of the disease exists but often requires collecting multiple types of pathologies which can be tedious and time-consuming. Meanwhile, studies on deep learning-based research are rare and often need to rely on a small amount of pathological data due to the rarity of the disease. In addition, the existing research works do not address the data scarcity issue apart from using common techniques like data augmentation, which leaves room for performance improvement. To tackle the issue, the proposed research aims to utilize distilled knowledge learned from a larger dataset to boost the performance of a lightweight model trained on a small MPN dataset. Firstly, a 50-layer ResNet model is trained on a large lymph node image dataset of 3,27,680 images, followed by the trained knowledge being distilled to a small 4-layer CNN model. Afterward, the CNN model is initialized with the pre-trained weights to further train on a small MPN dataset of 300 images. Empirical analysis showcases that the CNN with distilled knowledge achieves 97% accuracy compared to 89.67% accuracy achieved by a clone CNN trained from scratch. The distilled knowledge transfer approach also proves to be more effective than more simple data scarcity handling approaches such as augmentation and manual feature extraction. Overall, the research affirms the effectiveness of transferring distilled knowledge to address the data scarcity issue and achieves better convergence when training on a Ph-Negative MPN image dataset with a lightweight model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.