Abstract

AbstractDeep learning-based methods for mitochondria segmentation require sufficient annotations on Electron Microscopy (EM) volumes, which are often expensive and time-consuming to collect. Recently, Unsupervised Domain Adaptation (UDA) has been proposed to avoid annotating on target EM volumes by exploiting annotated source EM volumes. However, existing UDA methods for mitochondria segmentation only address the intra-section gap between source and target volumes but ignore the inter-section gap between them, which restricts the generalization capability of the learned model on target volumes. In this paper, for the first time, we propose a domain adaptive mitochondria segmentation method via enforcing inter-section consistency. The key idea is to learn an inter-section residual on the segmentation results of adjacent sections using a CNN. The inter-section residuals predicted from source and target volumes are then aligned via adversarial learning. Meanwhile, guided by the learned inter-section residual, we can generate pseudo labels to supervise the segmentation of adjacent sections inside the target volume, which further enforces inter-section consistency. Extensive experiments demonstrate the superiority of our proposed method on four representative and diverse EM datasets. Code is available at https://github.com/weih527/DA-ISC.KeywordsMitochondria segmentationUnsupervised domain adaptationInter-section consistencyElectron microscopy images

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.