Abstract

For the convolutional neural network (CNN)-based trackers, most of them locate the target only within a local area, which makes the trackers hard to recapture the target after drifting into the background. Besides, most state-of-the-art trackers spend a large amount of time on training the CNN-based classification networks online to adapt to the current domain. In this paper, to address the two problems, we propose a robust domain adaptation tracker based on the CNNs. The proposed tracker contains three CNNs: a local location network (LL-Net), a global location network (GL-Net), and a domain adaptation classification network (DA-Net). For the former problem, if we come to the conclusion that the tracker drifts into the background based on the output of the LL-Net, we will search for the target in a global area of the current frame based on the GL-Net. For the latter problem, we propose a CNN-based DA-Net with a domain adaptation (DA) layer. By pre-training the DA-Net offline, the DA-Net can adapt to the current domain by only updating the parameters of the DA layer in one training iteration when the online training is triggered, which makes the tracker run five times faster than MDNet with comparable tracking performance. The experimental results show that our tracker performs favorably against the state-of-the-art trackers on three popular benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.