Abstract

Multitask optimization (MTO) is a new optimization paradigm that leverages useful information contained in multiple tasks to help solve each other. It attracts increasing attention in recent years and gains significant performance improvements. However, the solutions of distinct tasks usually obey different distributions. To avoid that individuals after intertask learning are not suitable for the original task due to the distribution differences and even impede overall solution efficiency, we propose a novel multitask evolutionary framework that enables knowledge aggregation and online learning among distinct tasks to solve MTO problems. Our proposal designs a domain adaptation-based mapping strategy to reduce the difference across solution domains and find more genetic traits to improve the effectiveness of information interactions. To further improve the algorithm performance, we propose a smart way to divide initial population into different subpopulations and choose suitable individuals to learn. By ranking individuals in target subpopulation, worse-performing individuals can learn from other tasks. The significant advantage of our proposed paradigm over the state of the art is verified via a series of MTO benchmark studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.